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List of Symbols 
 

Arabic Symbols 

Symbol Description 

𝑎𝑎 Lattice parameter, Lattice constant 

𝑎𝑎𝚤𝚤���⃑  Acceleration 

𝐴𝐴 Constant number 

𝐴𝐴1 Strength (1, refer to acoustic short-range phonons) 

𝐴𝐴2 Strength (2, refer to acoustic long-range phonons) 

𝐵𝐵𝑇𝑇 Isothermal bulk modulus 

𝐶𝐶1 Partial heat capacity of acoustic short-range phonon modes 

𝐶𝐶2 Partial heat capacity of acoustic long-range phonon modes 

C11, C12 and C44 Elastic constants 

𝐶𝐶𝐷𝐷 Debye heat capacity 

𝐶𝐶DP Classical lattice heat capacity known as Dulong and Petit value 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Tensor of elastic constants 

𝐶𝐶𝐽𝐽𝐽𝐽1  Contribution into the HCACF decay due to the acoustic short-

range phonon modes  

𝐶𝐶𝐽𝐽𝐽𝐽2  Contribution into the HCACF decay due to the acoustic long-

range phonon modes  

𝐶𝐶𝑃𝑃 Heat capacity at constant pressure 

𝐶𝐶𝑉𝑉 Heat capacity at constant volume 

𝐷𝐷(𝜔𝜔) Density of state 

𝑒𝑒𝑖𝑖 

𝐸𝐸 

Total energy of the i-th atom 

Total energy 

𝑓𝑓1 Fraction of the acoustic short-range phonon modes 

𝑓𝑓2 Fraction of the acoustic long-range phonon modes 

𝐅𝐅𝑖𝑖 Force 

𝐹𝐹𝛼𝛼 The embedding function for type 𝛼𝛼 

𝒈𝒈 Reciprocal lattice vector 

𝑔𝑔(𝜔𝜔,𝑇𝑇) Density of phonon modes 

𝑔𝑔1(𝜔𝜔,𝑇𝑇) Density of the acoustic short-range phonon modes 
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𝑔𝑔2(𝜔𝜔,𝑇𝑇) Density of the acoustic long-range phonon modes 

𝑱𝑱 Microscopic heat current vector per unit volume 

𝑱𝑱1 Heat current due to acoustic short-range phonon modes 

𝑱𝑱2 Heat current due to acoustic long-range phonon modes 

𝑘𝑘 Thermal conductivity  

𝑘𝑘1 Thermal conductivity (1, refer to acoustic short-range phonons) 

𝑘𝑘2 Thermal conductivity (2, refer to acoustic long-range phonons) 

𝑘𝑘B Boltzmann constant 

𝑘𝑘𝑒𝑒𝑒𝑒 Electron thermal conductivity 

𝑘𝑘𝑒𝑒𝑒𝑒−𝑝𝑝ℎ Electronic thermal conductivity when limited by phonon 

scattering 

𝑘𝑘𝑝𝑝ℎ Phonon thermal conductivity 

𝑘𝑘𝑝𝑝ℎ−𝑒𝑒𝑒𝑒 Phonon thermal conductivity when limited by electron scattering 

𝑘𝑘𝑝𝑝ℎ−𝑝𝑝ℎ Lattice thermal conductivity determined by the phonon-phonon 

scattering processes 

𝐿𝐿0 Lorenz Constant 

𝑚𝑚 Mass of atom 

𝑚𝑚𝑖𝑖 Mass of atom i 

𝑛𝑛 Number of atoms in the specimen, Phonon distribution 

𝑛𝑛𝑒𝑒 Free electron per atom 

𝑛𝑛0 Equilibrium phonon distribution 

𝑛𝑛0′  Displaced phonon distribution 

𝑁𝑁 Number of atoms 

𝑁𝑁1 Acoustic short-range phonon modes 

𝑁𝑁2 Acoustic long-range phonon modes 

𝑃𝑃 Pressure 

𝑝𝑝1 and 𝑝𝑝2 Probabilities 

𝐩𝐩𝑖𝑖 Momentum vectors 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 Pressure 

𝒒𝒒 Wave vector 

𝑄𝑄 Heat flux 

𝒓𝒓𝑖𝑖 Position vectors, radius-vector of the i-th atom 
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𝑟𝑟𝑖𝑖𝑖𝑖 Distance between the centres of the two particles 

𝑟𝑟𝑖𝑖,𝑗𝑗 Distance between atom i and j 

𝑅𝑅(𝜔𝜔) Thermal resistance 

𝑅𝑅1(𝜔𝜔) Thermal resistance of the acoustic short-range phonon modes 

𝑅𝑅2(𝜔𝜔) Thermal resistance of the acoustic long-range phonon modes 

𝑠𝑠 Speed of sound 

𝑠𝑠𝒆𝒆,𝑏𝑏 Speed of sound in the direction of 𝒆𝒆 = 𝒒𝒒
|𝒒𝒒| for polarization 𝑏𝑏 

𝑠𝑠𝑙𝑙,𝛿𝛿 Phonon speed of the longitudinal mode at given direction 

𝑠𝑠𝑝𝑝ℎ Phonon velocity 

𝑠𝑠𝑡𝑡1,𝛿𝛿  and 𝑠𝑠𝑡𝑡2,𝛿𝛿 Phonon speeds of the two transvers mode at given direction 

𝑆𝑆 Seebeck coefficient 

𝑆𝑆𝐽𝐽(𝜔𝜔) The power spectrum of the equilibrium fluctuations of the total 

heat flux 𝐽𝐽(𝑡𝑡) 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Spectrum of power dissipation 

𝑆𝑆𝑋𝑋(𝜔𝜔) The power spectrum of the spontaneously fluctuating 

thermodynamic force 𝑋𝑋(𝑡𝑡) 

𝑡𝑡 Time 

𝑇𝑇 Absolute temperature 

𝑇𝑇𝐷𝐷 Debye temperature 

𝑇𝑇𝑚𝑚 Melting temperature 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 Desired temperature 

𝒖𝒖 Drift velocity in the direction of the heat flow 

𝑈𝑈 Thermal energy 

𝑈𝑈𝑖𝑖𝑖𝑖 Lennard-Jones potential 

𝑉𝑉 Volume of the simulation cell 

𝑣𝑣𝑖𝑖 Absolute value of the velocity vector of the atom  

𝑣𝑣𝑖𝑖𝑖𝑖   or  𝑣𝑣𝑖𝑖𝑖𝑖 Components of the vectors 𝒗𝒗𝑖𝑖 

𝑣𝑣𝑔𝑔 Phonon velocity 

𝑣𝑣𝐺𝐺  Group velocity 

𝑣𝑣𝑃𝑃 Phonon phase velocity 

𝑥𝑥𝑖𝑖𝑖𝑖 Components of the vectors 𝒓𝒓𝑖𝑖 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖   or  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 Components of the vectors 𝒓𝒓𝑖𝑖𝑖𝑖 
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𝑿𝑿 Thermodynamic force 

𝑌𝑌(𝜔𝜔) Thermal reactance 

𝑌𝑌1(𝜔𝜔) Thermal reactance of the acoustic short-range phonon modes 

𝑌𝑌2(𝜔𝜔) Thermal reactance of the acoustic long-range phonon modes 

𝑍𝑍(𝜔𝜔) Thermal Impedance 

𝑍𝑍1(𝜔𝜔) Thermal impedance of the acoustic short-range phonon modes 

𝑍𝑍2(𝜔𝜔) Thermal impedance of the acoustic long-range phonon modes 
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Greek Symbols 

Symbol Description 

𝛼𝛼Ω Parameters of atomic volume quadratic equation 

𝛼𝛼𝑃𝑃 Coefficient of thermal expansion 

𝛼𝛼𝑉𝑉 Coefficient of thermal expansion 

𝛼𝛼 and 𝛽𝛽 The element types of atoms i and j 

𝛽𝛽Ω Parameters of atomic volume quadratic equation 

𝛽𝛽𝑇𝑇 Isothermal compressibility 

𝛿𝛿 Given direction 

𝛿𝛿2 Dimensionless factor which should be less than unity 

𝛿𝛿(𝜔𝜔 + 𝜔𝜔′) Dirac delta function 

𝛬𝛬 Mean free path 

∇𝑇𝑇 Temperature gradient 

𝜀𝜀 Depth of the potential well 

𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑦𝑦 Compression strain 

𝜀𝜀𝑥𝑥𝑥𝑥 Shear strain 

𝜖𝜖 Time history of parameter 

𝜑𝜑1 Contribution of the acoustic short-range phonon modes into the 

lattice heat capacity 

𝜑𝜑2 Contribution of the acoustic long-range phonon modes into the 

lattice heat capacity 

∅𝛼𝛼𝛼𝛼 Pair-wise potential function 

𝛾𝛾 Gruneisen parameter 

ℏ Reduce Plank constant 

𝜆𝜆𝐷𝐷 Shortest wavelength 

𝜇𝜇 Phonon mobility 

𝜂𝜂 Damping parameter 

Ω Atomic volume 

Ω0 Parameters of atomic volume quadratic equation 

𝜌𝜌 Mass density 

𝜌̅𝜌𝑖𝑖 Host electron density 

http://en.wikipedia.org/wiki/Potential_well
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𝜌𝜌𝛽𝛽 The electron density from one atom of type 𝛽𝛽 at location of the 

other atom 

𝜌𝜌𝜇𝜇𝑗𝑗�𝑟𝑟𝑖𝑖𝑖𝑖� Electron density induced by an atom j at the location of atom i 

𝜎𝜎 Finite distance, Entropy 

𝜎𝜎𝑒𝑒𝑒𝑒 Electrical conductivity 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
(𝑝𝑝)  Potential energy contribution to the components of the stress 

tensor of atom i 

𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑦𝑦𝑦𝑦 Compression stress 

𝜎𝜎𝑥𝑥𝑥𝑥 Shear stress 

𝜏𝜏 Relaxation time 

𝜏𝜏1 Time constant (1, refer to acoustic short-range phonons) 

𝜏𝜏2 Time constant (2, refer to acoustic long-range phonons) 

𝜏𝜏1′  Average relaxation time 

𝜏𝜏2N Relaxation time for a given acoustic long range phonon mode to 

restore the same perturbed phonon distribution 𝑛𝑛(𝒒𝒒, 𝑏𝑏,𝑇𝑇) to the 

displaced distribution 𝑛𝑛0′ (𝒒𝒒, 𝑏𝑏,𝒖𝒖,𝑇𝑇) via N-processes 

𝜏𝜏1U Relaxation time for a given acoustic short-range phonon mode to 

restore a perturbed phonon distribution 𝑛𝑛(𝒒𝒒, 𝑏𝑏,𝑇𝑇) to the 

equilibrium distribution 𝑛𝑛0(𝒒𝒒, 𝑏𝑏,𝑇𝑇) via U-processes 

𝜏𝜏2U Relaxation time for a given acoustic long-range phonon mode to 

restore the displaced distribution 𝑛𝑛0′ (𝒒𝒒, 𝑏𝑏,𝒖𝒖,𝑇𝑇) to the equilibrium 

distribution 𝑛𝑛0(𝒒𝒒, 𝑏𝑏,𝑇𝑇) via U-processes 

𝜏𝜏c Characteristic time constant 

𝜏𝜏𝐶𝐶  Combined relaxation time 

𝜏𝜏𝑀𝑀  Effective relaxation time for a given phonon mode 

𝜏𝜏𝑁𝑁  Mode-dependent relaxation time for N-processes 

𝜏𝜏𝑃𝑃 Barostate time constant 

𝜏𝜏𝑇𝑇  Reservoir-system time constant 

𝜏𝜏𝑈𝑈  Mode-dependent relaxation time for U-processes 

𝜏𝜏∗ Phonon relaxation time 

𝒗𝒗𝑖𝑖 

𝜔𝜔 

Velocity vector of the i-th atom 

Angular frequency 
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𝜔𝜔1 Low-frequency phonon mode 

𝜔𝜔2 and 𝜔𝜔3 High-frequency phonon mode 

𝜔𝜔(𝒒𝒒, 𝑏𝑏) Angular frequency which is a function of the phonon wave vector 

𝒒𝒒 and the phonon polarization 𝑏𝑏 

𝜔𝜔c Characteristic angular frequency 

𝜔𝜔𝐷𝐷 Debye frequency 

𝜔𝜔𝑑𝑑1 Maximum location of 𝑆𝑆𝐽𝐽1(𝜔𝜔), Damped resonance frequency 

𝜔𝜔𝑑𝑑2 Maximum location of 𝑆𝑆𝐽𝐽2(𝜔𝜔)  

𝜔𝜔𝑅𝑅 Maximum location of power spectrum 

𝜔𝜔01 Undamped resonance frequency 

𝜔𝜔01
′  Minimum of |𝑍𝑍1(𝜔𝜔)|, where 𝑌𝑌1(𝜔𝜔) passes via zero value 

𝜔𝜔02 Minimum location of impedance |𝑍𝑍2(𝜔𝜔)|of the acoustic long rang 

phonon modes 
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Abbreviations 

Abbreviation Description 

Ag Silver 

Al Aluminium 

Ar Argon 

b.c.c. Body-centred cubic 

Cu Copper 

EAM Embedded-atom method 

f.c.c. Face-centred cubic 

Ge Germanium 

HCACF Heat current autocorrelation function 

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 

MD Molecular dynamics 

N-processes Normal processes 

Ni Nickel 

NiEAM1  f.c.c. Ni that describe by EAM interatomic potential developed 

by Mishin et al, (published in 1999) 

NiEAM2 f.c.c. Ni that describe by EAM interatomic potential developed 

by Mishin et al, (published in 2004) 

NPT  Isobaric-isothermal ensemble 

NVE Micro canonical ensemble 

NVT Canonical ensemble 

ps picosecond 

sc Simple cubic 

Si Silicon 

SiGe Silicon germanium 

THz Terahertz 

U-processes Umklapp processes 
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Abstract 
 

In this study, the phonon dynamics and lattice thermal conductivity of f.c.c. Copper (Cu), 

Aluminium (Al), Nickel (Ni) and Silver (Ag), as case studies, are investigated over a 

wide range of temperatures in detail. Calculations are performed within the framework 

of equilibrium molecular dynamics simulations in conjunction with the Green-Kubo 

formalism. To describe the interatomic interaction, the most reliable embedded-atom 

method potentials are used. It should be noted that for Ni two different embedded-atom 

method interatomic potentials are considered. Hereafter, the first potential is referred to 

as NiEAM1 (published in 1999) while the second potential is referred to as NiEAM2 

(published in 2004). In all the models considered, a two-stage decay in the heat current 

autocorrelation function was observed. After the first stage of decay, the heat current 

autocorrelation function showed a peak in the low temperature range. The intensity of 

the peak decreased as the temperature increased. Furthermore, it transformed to a 

shoulder which diminished at high temperatures. It was revealed that the lattice thermal 

conductivity of a monatomic lattice can be decomposed into two contributions due to 

the acoustic short- and long-range phonon modes. These two contributions can be 

presented in the form of simple kinetic formulas consisting of the products of the heat 

capacity, the square of the average phonon velocity and the average relaxation time of 

the acoustic short- and long-range phonon modes, respectively. In addition, this analysis 

allowed for numerical evaluations of all these quantities, in a self-consistent manner, 

from the heat current autocorrelation function. In particular, it was shown that the 

average phonon velocities of the acoustic short- and long-range phonon modes must be 

equal to each other and can be expressed via second-order fluctuations of the heat current 

vector.  

This was followed by an extensive consideration of the spectral representation of the 

analytical model for the heat current autocorrelation function. This has the potential to 

be used to efficiently decode the generic information on the lattice thermal conductivity 

and phonon dynamics from spectroscopic measurements, with no gradients imposed on 

the studied crystal, if a proper resolution of the frequency range of approximately 1 – 20 

THz is accessible. In this research, the contribution to the lattice thermal conductivity 

determined by the phonon-electron scattering processes was intentionally ignored, and 
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only the contribution due to the phonon-phonon scattering processes was considered. 

However, during comparisons of the data with the experiments, an estimation of the first 

contribution was made. Moreover, it is also of great interest, for practical applications, 

to have simple scaling relations between the lattice thermal conductivity and the other 

lattice properties readily accessible in experiments, such as the thermal expansion and 

elasticity. In this context, the scaling relations of the lattice thermal conductivity with 

the coefficient of the thermal expansion and the bulk modulus were estimated. 

 

 
 


